Unsupervised Learning of Relations
نویسندگان
چکیده
Learning processes allow the central nervous system to learn relationships between stimuli. Even stimuli from different modalities can easily be associated, and these associations can include the learning of mappings between observable parameters of the stimuli. The data structures and processing methods of the brain, however, remain very poorly understood. We investigate the ability of simple, biologically plausible processing mechanisms to learn such relationships when the data is represented using population codes, a coding scheme that has been found in a variety of cortical areas. We require that the relationships are learned not just from the point of view of an omniscient observer, but rather the network itself must be able to make effective use of the learned relationship, within the population code representations. Using a form of Hebbian learning, local winner-take-all, and homeostatic activity regulation away from the periphery, we obtain a learning framework which is able to learn relationships from examples and then use the learned relationships for a variety of routine nervous system tasks such as inference, de-noising, cue-integration, and decision making.
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملUnsupervised Learning of Semantic Relation Composition
This paper presents an unsupervised method for deriving inference axioms by composing semantic relations. The method is independent of any particular relation inventory. It relies on describing semantic relations using primitives and manipulating these primitives according to an algebra. The method was tested using a set of eight semantic relations yielding 78 inference axioms which were evalua...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملUnsupervised selection of semantic relations for improving a distributional thesaurus (Sélection non supervisée de relations sémantiques pour améliorer un thésaurus distributionnel) [in French]
Unsupervised selection of semantic relations for improving a distributional thesaurus Work about distributional thesauri has shown that the relations in these thesauri are mainly reliable for high frequency words. In this article, we propose a method for improving such a thesaurus through its re-balancing in favor of low frequency words. This method is based on a bootstrapping mechanism : a set...
متن کاملTwo Approaches for Building an Unsupervised Dependency Parser and Their Other Applications
Much work has been done on building a parser for natural languages, but most of this work has concentrated on supervised parsing. Unsupervised parsing is a less explored area, and unsupervised dependency parser has hardly been tried. In this paper we present two approaches for building an unsupervised dependency parser. One approach is based on learning dependency relations and the other on lea...
متن کامل